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Abstract— We present an object detection model using deep 

learning for event-based cameras in real-time. Event-based 

cameras are bioinspired devices able to capture lighting changes 

asynchronously at a high temporal resolution, high dynamic 

range, and low power consumption. Due to its event-based 

nature, the information acquired by those devices is very 

different from standard intensity images acquired by traditional 

cameras making the conventional detection methods not well 

suited for event-data. We first introduce a labeled dataset 

containing records of seven objects made with a Dynamic Vision 

Sensor (DVS128), then we run three different approaches to 

convert the sparse data generated by the DVS128 and use these 

data to train a deep learning model based on You Only Look 

Once (YOLO) for detection of objects to perform tracking in 

complex environments using an event-based camera in high 

temporal resolution. Our results show that any of the three 

approaches generate a good tracking model for event-data, 

however, not all three are suitable for real-time applications. 
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I. INTRODUCTION  

Event-based cameras (or silicon retina) are bioinspired 
devices that work in an asynchronous way capturing events of 
illuminance changes in a scene like the spiking 
neurotransmission within biological visual pathways [1]–[3]. 
Those devices make part of a new field of technology called 
Neuromorphic Engineering that aims to develop new 
bioinspired computational approaches to overcome traditional 
challenges of robotics [4]–[6]. 

The information acquired by the event-based cameras is 
different from standard intensity images. While standard 
cameras acquire the light intensity of a scene in a clock-based 
way, in event-based cameras each pixel works asynchronously 
acquiring variation of luminosity (Fig. 1). These 
characteristics guarantee advantages that consist of a high 
dynamic range, high temporal resolution, and low latency, and 
low power consumptions [1]–[3], [7].  

Fig. 1. Stream of events in space-time represantation generated by a mug in 

a dynamic camera environment.  

 Because of the sparse nature of the data acquired by the 
event-cameras, novel computational approaches must be 
developed to solve traditional computer vision tasks that are 
already surpassed in traditional frame images. Each event 
acquired by the Dynamic Vision Sensor can be defined as 

𝑒𝑖 = [𝑆𝑖(𝑥, 𝑦), 𝑡𝑖 , 𝑃𝑖], 𝑖 ∈ 𝑁∗                (1), 

where 𝑒𝑖 is the 𝑖𝑡ℎ  event in the stream of events and carries 
three basic information: the location at 𝑆𝑖(𝑥, 𝑦)  at which 
contrast variation has occurred, the time 𝑡𝑖 and the polarity 𝑃𝑖, 
with 𝑃𝑖  ∈ { −1, 1}, where – 1 and 1 represent the events of 
decrease and increase of luminance, respectively. 

To use conventional deep learning techniques on such 
sparse data from the event-based cameras some works have 
focused in convert the event-data to a dense representation 
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[8]–[10]. However, the information recorded by the event-
based cameras, constantly faces the challenge of data 
association generating a change of the appearance of the scene 
depending on the motion direction of the sensor (Fig. 2). 

We believe that, with deep learning techniques, the 
variation of appearance could be overcome by increasing data 
with multi representation. However, it is a recent area of study 
and there is no collaborative research field in neuromorphic 
vision to achieve the same level of a dataset that computer 
vision has today. Some works, like ours, present a contribution 
in increasing the amount of neuromorphic data available [11], 
[12]. 

In this paper we have created and labeled a dataset with a 
complex environment using records of 24s of seven different 
daily living objects in multiples perspectives using a Dynamic 
Vision Sensor (DVS128) to collaborate with the development 
of new algorithms to work with event-data. We also have 
implemented three techniques to convert sparse data into 
dense representation: a) Increment Surface, b) Speed Invariant 
Time Surface [9], and c) Time-Ordered Recent Event (TORE) 
[8]. We use those approaches to training a deep learning model 
based on the You Only Look Once (YOLO) [13] to detect in 
real time objects and compare the result of the three 
techniques and their ability to overcome the challenge of date 
association. 

II. METHODOLOGY 

A. Dataset 

 

To generate the dataset to train our deep learning model 
we have recorded seven objects from different perspectives of 
the same object using a DVS128. We have attached the 
DVS128 in a robotic arm (WidowX) responsible for the 
movement of the event-based camera around the object.  

Every record has a duration of 24s and each one of them 
has the same trajectory guided by the robotic arm and has your 
own ground truth containing the bounding box of the object. 
We apply all three methods of converting the sparse data to a 
dense one in each record using a time interval of 100ms and 
generate 208 event surfaces for each object (Fig. 3), and 
separate 80% of the surfaces for training and 20% for test. The 
total amount of surfaces resulting from each method was 1456 
surfaces. 

The objects chosen to fulfill the dataset are a) Banana, b) 
Cup, c) Fork, d) Key, e) Knife, f) Mug and g) Orange (Fig. 3). 
All objects were chosen for their presence in everyday 
activities. The dataset is available online 
(https://git.io/JRWw5). 

 

B. Increment Surface 

 

A general way to generate dense information from the 

events stream is to integrate a time window of events (𝑊𝑘) 

where the intensity (I) at a pixel in the position 𝑆(𝑥, 𝑦) it is 

the result of the integration of the polarity 𝑃 ∈ { −1, 1} in 

that position. The law to generate an Increment Surface is 

given by Equation 2: 

 

𝐼𝑘 =  𝛴𝑒𝑗  ∈ 𝑊𝑘
 𝛿(𝐼𝑆(𝑥,𝑦) − 𝐼𝑆(𝑥,𝑦)𝑗)  (2) 

 

However, the value of the time window must be carefully 

chosen because a small interval may not have enough 

information and larger intervals could generate motion blur. 

For this work, we use a time window of events being 100ms 

long and apply this method for every record on the dataset. 

 

C. Speed Invariant Time Surface (SITS) 

 

Methods to integrate events over a short time interval 

generate changes in appearance on the edges pattern with 

respect to the motion and the aspect of the time surface can 

be very susceptible to direction and contrast of the corners 

[14]. For that reason, the work in [9] presents an approach to 

minimize the effect of speed on the surface of events.  

The pipeline of the work in [9] is to make recent events 

more relevant than older events in a constraint environment 

close to the recent event. To do so each event received is 

stored in her location and decreased the values for the 

surrounding in a neighborhood of the size (2𝑟 + 1)𝑥(2𝑟 +
1), where 𝑟 is a radius parameter that in this work we set to 2 

and we do not distinguish the polarity of the events for the 

implementation of the SITS. 

This method is appropriate for the present work due to the 

movement of the robotic arm who has velocity changes 

Fig. 2.  Representation of the data association challenge. Both 

representations (a and b) are from the same object, however the motion of 

the event-based sensor are different. In (a) the motion is in the diagonal and 

in (b) the movement is up-down. These images are generated integrating 

events in a time interval, where in gray are represented pixels where do not 

have intensity change, and the pixels where have positive and negative 

intensity change are marked as white and black, respectively. Image adapted 

from [14]. 

Fig. 3. Recorded objects for dataset. Frame-events was generated integrating 

events in a time window of 100ms where gray pixels represent no event, 

black pixels represent negative intensity events and white pixels represent 

positive events. The recorded objects are a) Banana, b) Cup, c) Fork, d) Key, 

e) Knife, f) Mug and g) Orange. 

https://git.io/JRWw5


during motion and therefore presenting some pattern 

differences in the surfaces for the same object in different 

moments of the records.  

 

D. Time-Ordered Recent Event Volumes (TORE) 

 

One of the approaches used to convert the sparse data of 
the records to a dense representation was the method described 
by the work [8]. Event-data carries important information in 
the correlation between space and time, however, some 
methods of generating time surfaces by integration of events 
in a time interval suppress some important time information 
[15]. TORE is a bioinspired design for store raw spiking time 
information and make more suitable for deep learning models 
without neglect important time information. 

The TORE model proposed in [8] was modified to make it 
more suitable to the YOLO-based model for detection. TORE 
volumes are implemented based on FIFO queue per polarity 
given by: 

𝑇𝑂𝑅𝐸(𝑥, 𝑦, 𝑝, 𝑘, 𝑡) = max (min (log(𝑡 −
𝐹𝐼𝐹𝑂(𝑥, 𝑦, 𝑝, 𝑘) + 1, log(𝜏)) , log(𝜏′))  (3), 

where 𝑘 is the length of the FIFO, 𝜏 is the maximum time for 
storing an event and 𝜏’ is the sensitivity of the store model, 
since is a bioinspired model the 𝜏’ works as a refractory time 
to prevent consecutive events in the same location undermine 
less frequent events in the TORE.   

 For this work, we use 𝑘 = 4, 𝜏 as 5𝑥106 (5 s) and 𝜏’ as 150 
(150 µs), however to adequate the TORE Volume as input for 
the YOLO-based model we have sampled the TORE in an 
interval of 100ms and stored the time information, for each 
polarity, for only the last event in each sliced-TORE. As the 
timestamp during the record only increases, we chose to run a 
normalization process to adequate the timestamps for each 
100ms window. 

 

E. YOLO-based model for event-based obect detection 

 

Detection tasks are a very important and useful tool in 
robotics. Thanks to the use of deep learning techniques, the 
amount of labeled data present in large Computer Vision 
datasets available online, and the good work done in [13] the 
detection task in real time are successfully accomplished in 
computer vision applications.  

To achieve a high temporal resolution in detection tasks 
using event-based data we use a YOLO-based model to detect 
objects in complex environments and different poses. The 
model used for this work has the architecture present in Table 
1. We run the training process with an image input size of 
128x128 and train our model using 1000 train epochs and a 
batch size of 16.  

TABLE I.  YOLO-BASED ARCHTECTURE 

# Quantity Name From Parameters 

0 
1 

Focus - [64, 3] 

1 
1 

Conv 0 [128, 3, 2] 

2 
3 

BottleneckCSP 1 [128] 

# Quantity Name From Parameters 

3 
1 

Conv 2 [256, 3, 2] 

4 
9 

BottleneckCSP 3 [256] 

5 
1 

Conv 4 [512, 3, 2] 

6 
9 

BottleneckCSP 5 [512] 

7 
1 

Conv 6 [1024, 3, 2] 

8 
1 

SPP 7 [1024, [5, 9, 13]] 

9 
3 

BottleneckCSP 8 [1024, False] 

10 
1 

Conv 9 [512, 1, 1] 

11 
1 

Upsample 10 [None, 2, 'nearest'] 

12 
1 

Concat 11,6  [1] 

13 
3 

BottleneckCSP 12 [512, False] 

14 
1 

Conv 13 [256, 1, 1] 

15 
1 

Upsample 14 [None, 2, 'nearest'] 

16 
1 

Concat 15,4 [1] 

17 
3 

 BottleneckCSP 16 [256, False] 

18 
1 

Conv 17 [256, 3, 2] 

19 
1 

Concat 18,14 [1] 

20 
3 

BottleneckCSP 19 [512, False] 

21 
1 

Conv 20 [512, 3, 2] 

22 
1 

Concat 21,10 [1] 

23 
3 

BottleneckCSP 22 [1024, False] 

III. RESULTS AND DISCUSSION 

A. Dataset 

 
Each conversion method of event-data in dense data to use 

in deep learning models generates a different frame-like 
representation of the events. This difference plays a major role 
in how the deep learning model learns the features of each 
class and impacts the generalization of the model in real time 
world applications.  

The main difference between the methods is presented in 
Fig. 4 where we can see the main capability of the SITS to be 
invariant of speed. In Fig. 4 (a) and (c) it is possible to perceive 
a motion blur caused by the process applied in the Increment 
Surface and the adapted TORE method, the same is not 
present in the SITS representation (b), making the edges of the 
objects sharper and more accurate. 

The SITS method increases noise in isolated events that 
could be beneficial to deep learning models for having more 
variability in non-interesting regions. Applications where the 
event-based camera is in movement [16], [17] generate a more 
complex problem for feature detection because of the 
background information generated by the movement of the 
camera, the data-association problem [14] and the noise 
(neuromorphic sensors are usually noisy [18]). The increased 



noisy in SITS could be particularly good to train deep learning 
models making then more robust for applications where the 
event-based camera are in movement.  

The adapted TORE method is present in Fig. 4 (c) and 
represents an approach for adapt event-data to dense data 
based on time information, making the appearance of the 
event-frames dependent on time. 

 

B. YOLO-based model 

 
The classification performance and the average precision 

of our YOLO-based model are shown in Fig. 5 (a) and (b), 
respectively, for each conversion method used in this work. 
The summarization of the mean detection performance of our 
model (mean average precision - mAP) for a IoU (Intersection 
Over Union) at 50% is presented in Table 2. The inference 

time is about 7ms, allowing a real time application for tracking 
by detection using event-based cameras. 

TABLE II.  AVERAGE PRECISION 

 TORE SITS Increment Surface 

mAP@0.5 71.1 73.7 78.5 

Accuracy 85.8 80.7 87.2 

 

The confusion matrix for each method (Fig. 5 - a) shows 
that the mean performance of SITS, Increment Surface and 
TORE is not significantly different in classification. In 
traditional vision computer applications, there is high variance 
between the images used in train and images used for testing 
the model, however our entire dataset is originated from the 
same process and the test evaluation is done on part of our 
original recordings (20%), therefore we consider that a more 
representative result of the difference between the methods 
could be done in application dependent evaluation. 

In section b of Fig. 5 we present the behavior of the 
average precision of detection versus the recall of our YOLO-
based model for event-based cameras at 50% of IoU. Even if 
the precision of detection is, in general (Table 2), similar for 
all methods, the performance of isolated classes shows some 
poorly performance. The Key in the TORE method, per 
example, has a lower AUC (Area Under the Curve) than the 
other objects. The Key has a small size compared to other 
objects leading to a lack of performance for this item in 
general. 

Fig. 4. Representation of each conversion method in the record of a Cup. a) 

Increment Surface, b) SITS (non-polarity dependent) and c) adapted-TORE 

Volume. 

 

Fig. 5. Performance metrics of YOLO-based model. In (a) the confusion matrix of classification for each method of conversion (Increment Surface, SITS 

and TORE). In (b) the mean Average Precision for an Intersection over Union of 0.5 (50%) of each class and each conversion method. 

 



The work [19] uses a similar YOLO-based approach that 
our work, however, they use datasets converted from frame-
based to pseudo-event-based information [11], [12] leading to 
a deep learning model that is not robust to background 
information. Our approach uses a truly event-data database 
with background information, making it more suitable for 
applications where the event-based camera is in motion. 

Even if the overall performance of the three conversion 
methods is similar, we need to consider the computational cost 
involved in each one of them when applying one of those in a 
real time application. The Increment Surface is a direct 
process of generating a frame for a time window and therefore 
faster, however, the data association problem could lead to 
low performance of the model. The SITS present a great 
advantage of dealing with the problem of speed in records, 
however the process to generate a SITS is slower. The 
adapted-TORE Volume that we have used in this work shows 
a median computational cost, but not a great performance in 
general.  

IV. CONCLUSION 

In this work, we present a methodology to generate real 
time detection of objects using an event-based camera. We 
also introduce a new labeled event-based dataset to the 
community of neuromorphic vision and compare different 
approaches to adequate sparse data from event-based cameras 
to dense data and use them in a deep learning model.  

Our results show that any of the three types of generating 
dense information from event-data are suitable to deep 
learning models. The best result in terms of accuracy and 
precision was the Increment Surface. However, the capability 
of generalization in real time and daily living records remains 
to be study, due to the data association problem and the 
influence of the computational cost for performing the 
conversion methods, therefore in future works, we will be 
perusing an evaluation of the model trained for tracking 
purpose in complex environments.  
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