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Abstract— The surface electromyography is a non-invasive 

recording of biopotentials muscles signals. In the rehabilitation 

field, myoelectric prosthesis can be controlled by the features 

extracted from the signal and enable the devices adjustable for 

residual limb anatomy. In order to avoid the prosthesis 

abandonment, an efficient classification of these features is 

essential. In this way, this study analyzes 5 sEMG features 

classification of 8 isotonic and isometric hand movements. Thus, 

observing the behavior from 1 to 5 hidden layers in a Neural 

Pattern Recognition Network, the optimization of synaptic 

weights with Genetic Algorithm and their impact in accuracy. 

The results presented that the number of layers impact directly 

into algorithm accuracy. The best accuracy was an architecture 

of 4 hidden layers with an optimization of synaptic weights in 

pre-training reaching 73.10% of accuracy.  

Keywords — Recognition Pattern, Neural Pattern 

Recognition, Genetic Algorithm 

I. INTRODUCTION  

Currently, there are many studies that aim to improve the 
control of prostheses, especially in the upper limbs [1,2,3]. 
Amputations can occur with traumatic or non-traumatic 
etiologies and the myoelectric control of the prostheses is 
based on the muscles of the remaining limb. This fact makes 
categorizing surface electromyography patterns a more 
difficult task [4]. 

During daily activities, the anatomical structure of the 
hand, with the arm and forearm, perform various movements 
in three-dimensional space [5]. The focus of the use of 
prostheses is, partially or totally, the recovery of motor skills 
lost with the amputation. Subsequently, goaling the hability of 
the prosthesis control as similar as possible to the 
biomechanical movement [4]. 

For efficient myoelectric control analysis, it is usual to 
classify the characteristics of surface electromyographic 
(sEMG) signals, which are biopotential from the 
depolarization of the muscle membrane and induce 
contraction. They are extremely important to unveil the 
individual's movement intentions [1,6]. Neural pattern 
recognition (NPR) network is an artificial neural network type 
for features classification through a network training [1,7] and 
it can be used to classify the sEMG signal characteristics of 
limb movements. And, further, developing EMG-based 
control interfaces [8,9].  

On the other hand, Genetic Algorithms (GA) are globally 
optimized logical algorithms that are based on genetic and 
natural selection mechanisms. These algorithms are 
commonly used  in separation of biological electrical 

potentials as blind sources, estimation of torque and power of 
movement, also in approach of protheses gravitational point 
of balance, among other areas [10-13]. 

When is thought at a succesfully rehabilitation after an 
injury on the limb (amputation), the focus is on fast and 
efficient prosthesis control. The action classification time is 
also extremely important since an anatomical movement takes 
around 100 ms to occur [14]. First of all, if movement 
classification or movement action takes a longer interval than 
natural body behavior, the tendency of abandonment in use of 
prostheses increases. The reason is it does not meet 
expectations compared to conditions under natural body 
biomechanics [4]. 

In this way, this study aims to analyze the behavior of  
different algorithm architectures and, also, the influence of 
application of GA in optimization of the synaptic weights in 
NPR training. It makes possible understand if GA is a 
beneficially tool and in which conditions it might be inserted 
on network training for future prosthesis control. 

II. METHODOLOGY 

A. Database 

First, electromyography features data were extracted from 
a public and academic purposes dataset provided by [15]. In 
this database, it was selected ten right-handed able-bodied 
subjects. From the recording of sEMG signal, the volunteers 
executed 8 isometric and isotonic hand configurations as 
shown by Fig. 1.  

 

Fig. 1. Isotonic and isometric hand movements labeled from 1 to 8. Target 

movements classified from the neural pattern recognition network.  

The twelve electrodes were non-invasive and equally 
spaced which 8 were positioned around the forearm 



corresponding the radio humeral joint, 2 electrodes were 
placed on the main spots of the biceps and of the triceps. 
Finally, 2 last were place on the main spots of the flexor. All 
electrodes around the forearm were fixed using their standard 
adhesive bands. 

During the acquisition, the volunteers were asked to repeat 
the movements with the right hand, in a total of 8 different 
movements executed six times. In addition, each movement 
repetition was followed by three seconds of rest. The sEMG 
signals were sampled at a rate of 2 kHz. The data used in this 
study contained data files with synchronized variables.  

B. Data Processing 

The feature analysis from the sEMG signal consisted in the 
extraction of :  

• Root Mean Square (RMS)  

• Mean Absolute Value (MAV)  

• Discrete Wavelet Transform (DWT)  

• Wave Length (WL) 

• Slope Sign Changes (SSC) 

The selected features were chosen by the most relevant 
features analyzed from sEMG in the literature [16-18].  

The NPR network was backpropagation and it is a widely 
used algorithm for training feedforward neural networks. 
Once the features were extracted, the times executions NPR 
network training consisted in a total of 10 runs. In order to 
analyze the architecture impact, an amount of 60 neurons were 
spread into hidden layers, from 1 to 5. An algorithm 
compilation is called run.  

For one in a couple run, it was applied the GA optimization 
of synaptic weights. In other words, Run 1 and 2, NPR 
network was composed by one hidden layer with 60 neurons. 
In the subsequent Run 3 and 4, there were two hidden layers 
with 30 neurons each. Run 5 and 6 had three hidden layers 
with 20 neurons each. Followed by Run 7 and 8 with four 
hidden layers with 15 neurons each. And, finally, Run 9 e 10 
with five hidden layers had 12 neurons each. In the even run 
number, the GA was applied.  

The fitness function used was normalized mean square 
error (NMSE). The NMSE is used in order to avoid bias 
towards the model and it gives an overview of the model 
performance [19].  

III. RESULTS 

Regarding the best accuracy in the analysis, the Fig. 2 
shows the accuracies, in percentage, from all algorithm 
executions. The main result is the behavior of Run 8, an 
application of GA category with four hidden layers. This run 
reaches 73.10% of accuracy in the classification, which more 
than 70% was regarding movement 1. In view of other 
movements accuracies were around 0.15%. Excepted from 
target 1, the algorithm had difficulty to distinct fine different 
movements from index to little fingers. Considering the 
initially runs, 1 and 2, had the worse accuracies from the total 
10. These runs had only one hidden layers and were not 
functionally efficient. 

 

Fig. 2. Best accuracy of targets, in percentage, per run. The Run 8, 9 and 5 

reaches the highest accuracies, respectively, from all trainings.  

The Fig. 3 reveals the median target classification error 
from all targets, which is considered the absolute median 
values. The median variable is selected because an outlier 
error value from any movement does not interfere in hole 
complete analysis of the algorithm execution. In addition, the 
Run 9 had the lowest median under 0,0930.  

 

Fig. 3. Median target classification error among 10 runs which presents the 

worse meadian runs, 2,3 and 1 and better median runs, 10,4 and 9, 

respectively. 

The Fig. 4 shows a complete observation of behavior 
regarding the algorithms with and without GA optimization 
and the number of hidden layers. Until to three hidden layers, 
the algorithm without GA appeared a better classification, 
from four hidden layers, the GA infers a better accuracy. It is 
important to notice that for four hidden layers the optimized 
algorithm had half computational time in comparative without 
GA. 

 

Fig. 4. Accuracy over runs, a comparison between the architecture from 1 

to 5 hidden layers and the application or not of GA in synaptic weights 

of neural network. Highlight at 4 hidden layers where the algorithm 

reaches 73.10% of accuracy with optimization. CT: Computational 

Time. 



In sum, according to computational time proportional to 
no optimization compared to the application of GA, the 
optimization of synpatic weights reduces an interval in 
average of 30% less computational time. Considering relation 
between computational time and the algorithm architecture, 
four hidden layers (Run 7 and 8) demand 2 hours summed. 
Related to the second and third best accuracies, the hidden 
layers were five and three with no GA, respectively. The 
relation between computational time and network accuracy is 
illustrated by Fig. 5. Three best accuracies in all trainings. The 
computational time influence in diameter of bubble graphic, 
the X axis is the number of hidden layers and Y axis is the 
accuracy in percentage. Green bubbles are runs without 
optimization and colored blue, with  GA optimization. 

 

Fig. 5. The three best performances in all runs. The bubble diameter 

depends on computational time. Green bubbles are runs without 

optimization and blue, with  GA optimization. The best performance 

reaches 73.10% of accuracy.  

IV. DISCUSSION AND CONCLUSION 

Considering the various tridimensional space anatomy 
conformations combining hand, arm and forearm, the 
difficulty level at classification of each movement increases. 
As noticed, the analysis classification worked on offline 
system. On the other hand, for a functional use in daily living, 
the subject will work with an online system which will be 
feedforward with new data [20].  

This is the reason which optimization in network at higher 
accuracy of movement classification with lower 
computational cost as possible are essential. In view of the 
results obtained, it is possible to verify that the number of 
hidden layers interfere directly in the training and 
classification of the network. Fewer hidden layers, e.g. one or 
two hidden layers, lead to higher target error classifications as 
seen at Fig. 3. And, on the other hand, four and five hidden 
layers expose better results corresponding better accuracies 
from all architectures.  

From the confusion matrices acquired in the study, it was 
noticed that moviments between target 1 and 7, the algorithm 
had difficulty to classify differences of thumb and index finger 
configurations. As same, it appears problems to classify 
movements between targets from 2 to 8 which isotonic 
position fingers – index to minimum – change. These 
movements are considered fine fingers movements, compute 
extra dificultty in pattern recognition and subsequent high 
error classification. It is important to emphasize the fact that, 
from second to fifth digits, there is the same flexor and 
extensor muscles, which are flexor digitorum superficialis, 
flexor digitorum profundus and extensor digitorum. 
Subsequently, tendon portions branch out over each 
metacarpal head [21]. In fact, it is a plausable reason regarding 
the difficulty in diferentiate fine movements of hand fingers. 
Concerning the opposable thumb, it has two exclusive 

extensor muscles, extensor pollicis brevis and longus, and a 
flexor muscle, flexor pollicis brevis. The possibility of the 
model has been suffered underfitting is not excluded. In the 
literature, researches focus on classification of fine fingers 
movements above 90% accuracies in high quality prosthesis 
control [18, 22-24].  

The best accuracy founded in this study is not proper for a 
high quality control, as considered in the literature, above 90% 
[18]. Although, it shows that an optimization in synaptic 
weights in pre-training of neural pattern network has impact 
in final accuracy and in less computational time interval. From 
an overview, the GA does not bring benefits, according to Fig. 
4, because it is only better with 4 hidden layers. But, although 
this general view, the best result show up with application of 
genetic algorithm. Then, the behavior of a model with the 
implementation of GA depends on the algorithm architecture.   

In conclusion, the number of layers interfere directly into 
algorithm accuracy. Observed better beahviour of spreading 
an amount of 60 neurons into four hidden layers (12 neurons 
each) than one hidden layer with 60 neurons in total. The 
opmitization of synaptic weights, with GA, reduces the 
computational time in training the model with 4 hidden layers 
architecture. Finally, for future incorporation in this study, the 
focus is on improving the fitness function in optimization at 
pre-training stage of neural pattern recognition. Aiming a 
greater accuracy and better classification results for the targets 
selected in this study, followed by an expansion in the number 
of movements analyzed.  
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