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Abstract— Artificial Neural Networks (ANN) have been 

applied to recognize patterns from surface electromyography 

(sEMG) signals for specific hand gestures. ANN approach is a 

promising strategy to control upper limb prostheses once the 

classification accuracy has been reaching remarkable and 

confident values. However, ANN have a high computational cost 

and high time response, which impairs applications in real time. 

Many efforts seek to optimize ANN to reduce complexity and 

processing cost. Algorithms like Differential Evolution (DE) are 

usually applied to multi-parameters optimization due to its 

simplicity and high efficiency. There are no reports about DE 

applied to ANN optimization for sEMG pattern recognition. 

Thus, this paper proposes a hybrid machine learning model 

(HML) in which the neural network architecture has low 

complexity, and its classification accuracy is enhanced by the 

Differential Evolution algorithm. As results, it is proved that the 

classification accuracy increases with the HML model and a 

pathway to DE applied to sEMG pattern recognition is 

introduced. 

 

Keywords — Electromyography, Pattern Recognition, 

Artificial Neural Network, Differential Evolution 

I. INTRODUCTION 

Amputation of upper limb has one of the most complex 
rehabilitation processes due to more than 20 degrees of 
freedom (DoF) of the human hand [1]. Upper limb prostheses 
are certainly the first option to restore lost movements. There 
are several challenges being discussed since the 80’s and 
many efforts have succeeded, like surface electromyography 
(sEMG) sequential control, which is now the most exploited 
method to control commercial prostheses. [2]. Nonetheless, 
these devices are far from reaching the natural way that human 
hands operate [3]. 

Despite the advances in computer sciences and signal 
processing, sEMG control presents problems like cross- 
talking and low signal-to-noise ratio (SNR), restraining 
simultaneous or multiple finger control and dexterous position 
with proportional control. These limitations add cognitive 
load to the amputee to operate the prostheses because they 
often need to train specific muscle contraction patterns to 
activate related movements using sequential control strategies 
including to press buttons and rotate prosthesis elements [4]. 
As results, the number of devices abandonment reaches 
alarming values all over the world and the users usually justify 
it by the difficult of controllability and the non-intuitive way 
to use the prosthesis [5]. 

A possibility to reduce the cognitive load and to turn the 
prosthesis control into a more intuitive process is the 
recognition of hand gestures by sEMG electrodes. This 

 
approach is based on machine learning (ML) algorithms and 
allows the control system to detect the movement intention 
according to the sEMG features related to specific gestures 
[6]. Moreover, cross-talking, and low SNR effects are reduced 
when compared to sequential control due to algorithm training 
and feature extraction. There are several ML classifiers being 
applied to hand gesture recognition like support vector 
machine (SVM), linear discriminant analysis (LDA) and 
artificial neural networks (ANN). However, to classify a great 
number of gestures, ANN is the standard model once it has 
feasible parameters to create deep learning models and to 
process big data [7]. 

Beyond the advancement of ANN to classify sEMG 
signals, [8] created the NinaPro database to promote research 
on hand gesture recognition and to improve classification 
accuracy by optimization algorithms. Since then, many 
research groups have been published accurate results. This 
way, the NinaPro database will be used as main inclusion 
criterion to summarize the state of the art of ML models and 
its usability to hand gesture pattern recognition. This criterion 
is necessary due to huge variability in sEMG data and due to 
influence of data quality in classification accuracy. Also, the 
higher the number of movements, the higher the classification 
complexity. 

One attempt to enhance accuracy rates is to increase the 
number of hidden layers. However, adding hidden layers and 
neurons increases computational cost and processing time in a 
way that real-time applications are not feasible [9]. Thereby, 
there are many efforts to reduce complexity of ANN models 
without losing efficiency using optimization algorithms. 
These algorithms are mainly applied to determine 
hyperparameters and usually employ evolutionary strategies, 
generating hybrid ML models. Genetic Algorithms are 
generally used to optimize ANN hyperparameters [10, 11] and 
feature extraction from sEMG signal [12] together with 
another ML models like SVM [13, 14]. 

Despite promising results from AG, it also faces problems 
in terms of determining a great number of hyperparameters 
and high computational cost when compared to other 
evolutionary strategies like Differential Evolution (DE). It has 
low complexity, low computational cost and 3 main 
hyperparameters [15]. DE can be applied to ANN 
optimization [16], but there are no previous studies about DE 
and ML models applied to sEMG pattern recognition. 
Therefore, this paper proposes the application of Differential 
Evolution to optimize the synaptic weights and bias (Wb) of 
an ANN to classify sEMG signals. 



 

A. Database 

II. METHODS between -1 and 1. The values were updated by the training 
algorithm. 

sEMG data from ten able-bodied subjects of the second 
Ninapro database (DB2) were used in this paper, 8 right- 
handed and 2 left-handed with no neuromuscular disorders. 
Ten movements listed in Table 1 were classified together with 
rest position. Experiments consisted of 6 repetitions for each 
movement, being each movement 5 seconds last and followed 
by 3 seconds of rest to avoid muscular fatigue. Four wireless 
active electrodes from Delsys were positioned respectively on 
the main activity spots of flexor and extensor digitorum, 
biceps, triceps and 8 ones were equally spaced around the 
forearm in correspondence to the radio humeral joint. The 
sEMG signal was sampled at 2 kHz. Fig. 1. illustrates the 
movements. 

 

Fig. 1. Illustration of movements and respective classes. 

B. Artificial Neural Network (ANN) 

From de sEMG signal were extracted windows of 200ms 
with 50% overlap and the following features: Root-Mean- 
Square (RMS), Time-Domain statistics (TD), Histogram 
(HIST) and marginal Discrete Wavelet Transform (mDWT). 
Data from 10 subjects and 4 features were allocated in an input 
feature matrix resulting in 372 input neurons for a feedforward 
backpropagation ANN with 3 tan-sigmoid hidden layers of 20, 
30, 20 neurons respectively. Input data were divided into 70% 
for training, 15% for validation and 15% for testing with 
randomized selection. ANN output classified features into 11 
classes of movements including rest. The decision of number 
of hidden layers and neurons is still a challenge and will not 
be object of optimization in this paper. So, the architecture of 
the ANN was determined by trial-and-error method, avoiding 
low performance and over fitting. Fig. 2 shows the 
architecture ANN details. 

 

Fig. 2. Artificial Neural Network architecture with number of neurons in each 
layer 

Training algorithm was scaled conjugate gradient 
backpropagation and performance was analyzed by cross- 
entropy loss function. Stopping criteria were configured to 
1000 epochs, zero loss cross-entropy and 10-6 gradient value. 
As initial values, the ANN generated  8481 synaptic Wb 

C. Differential Evolution (DE) and Artificial Neural 

Network (ANN) 

Differential Evolution (DE) is a stochastic search method 
based on evolutionary concepts applied to populations of 
solutions for a complex problem. It produces new vector 
populations from an initial population that covers all the 
search space. Mutation generates new individuals by 
summation of weighted difference between two vectors to a 
third one or to a randomized combination of other two vectors. 
Scale Factor (F) is a real positive number that controls the rate 
at which the population evolves. Then resulting vectors are 
combined to others previously defined. This process is named 
crossover. The combined vectors are then tested in the fitness 
function and the stopping criteria are verified. If any criterion 
is attended a new cycle begins but the best vectors are selected 
to the new generation [17]. 

In this paper, DE is used to optimize the ANN 
performance, which means that the algorithm must reaches the 
global minimum of cross-entropy loss function by simulating 
the ANN. After running, DE generates optimized synaptic 
weights and biases which will be set to initial synaptic Wb for 
ANN training. 

Initial population of DE consists of 50 vectors of 
randomized and normal distributed real values between -1 and 
1. Each vector contains 8481 values. Crossover probability 
was set to 80% and Scale factor (F) was set to 10% for 20, 30 
or 50 generations. Fig. 3 shows de block diagram of ANN+DE 
approach. Wb’ is the new population created in each 
generation. 

 

Fig. 3. Block diagram of Differential Evolution strategy applied to 
Artificial Neural Network. 

Determination of Number of Generations (NG) is 
explained in the next session. Special attention must be given 
to the number of generations, since the tendency of DE 
algorithm is to provide uniform population during 
optimization. The higher the number of generations, the more 
uniform becomes the final population. This behavior is not 
efficient for initial values of synaptic weights of an ANN 
because the uniformity impairs the gradient dynamics, and the 
training algorithm needs more computational cost to update 
the Wb [17]. 



Moreover, the penalties applied in DE algorithm to 
maintain individuals inside the problem domains [-1, 1] 
generally turn the values out of boundaries into maximum or 
minimum values, in this case: -1 or 1. Also, the higher the 
number of generations, the higher the probability to set these 
values into the final population. Thus, with many biases’ 
values in an initial population, the ANN learning may be 
skewed. 

Fig. 4. illustrates the ANN model, but for “a” the Initial 
Wb is created by the ANN configuration itself and for “b” (DE 
+ ANN) the Optimal Wb is the result from Fig. 3. Thus, two 
ML models are compared: ANN model and a hybrid model 
(ED + ANN) for classifying sEMG data from 11 movements 
of Ninapro database 2 (DB2). 

 

 

Fig. 4. Block diagram of each model. “a”: ANN model. “b”: ANN + DE 
model. 

 

III. RESULTS 

Results of DE algorithm will be reported before the 
comparison between ANN and ANN + DE to explain the 
decision about the number of generations for the evolutionary 
algorithm. As aforementioned, the DE operation decreases the 
variability of the population along the generations. Thus, 
analysis of the evolution of fitness value is not the only 
necessary parameter to define the number of generations. Fig. 
5 shows the evolution of the fitness function for three numbers 
of generations: 20 (G20), 30 (G30) and 50 (G50). The fitness 
value represents the cross-entropy loss. The final value for 
each Ng is the initial performance value for the ANN training. 

 

Fig. 5. Performance of Differential Evolution for 20, 30 and 50 generations. 

Analyzing Fig.5 it is possible to assert that 20 and 50 
generations have the best performances. Otherwise, to 
determine which Ng produces the population with better 
accuracy for the ANN it is needed to test the three possibilities 

for the neural network. Fig. 6 Brings the performance results 
for training the ANN with Wb from 20, 30 and 50 generations. 

 

Fig. 6. Performance of ANN training with populations of 20, 30 and 50 
generations originated from Differential Evolution. 

By the Fig. 6 it can be assumed that 20 generations provide 
the best scenario. It is important to note that 20 and 50 
generations reached the same fitness value, which means that 
the ANN training started with the same performance value. 
Nonetheless, during the ANN training the evolution of 
performance is more efficient for 20 generations. Other 
interesting fact is that for 30 generations de Differential 
Evolution produced the worst fitness result, however for the 
ANN training the resulting population showed a better 
performance compared to 50 generation’s one. 

With the optimized Wb initial population (“b”), it is 
possible to compare its accuracy in an ANN with the accuracy 
of a randomized Wb population (“a”). Fig. 7 illustrates results 
from confusion matrix for the two methods. 

 

 
Fig. 7. Results from confusion matrix for two models. 

From Fig. 7 is possible to say that the hybrid model 
increased the mean classification accuracy. Fig. 8. details the 
classification accuracy for each movement. For ten classes the 
HM presents better accuracy, except for Class 7, which 
represents Pointing index movement. 



 

 
 

Fig. 8. Results from confusion matrix for two models for the 11 classes, 
representing all movements. 

 

IV. DISCUSSION 

Our study showed that Differential Evolution is feasible to 
optimize the synaptic Wb of an ANN to classify sEMG 
signals. Results confirm that de HM can increase the accuracy 
in most of movements. However, there is a need to investigate 
the influence of different hyperparameters in addition to 
synaptic weights like number of hidden layers and neurons 
and training algorithms. 

The proposed hybrid model ensures that the initial Wb 
population is optimized. This optimization reduces 
computational cost to ANN training once the initial 
performance is equal to the minimum cross-entropy loss 
reached by DE algorithm. In real life applications the training 
procedure to learn to use new prostheses is known to be tough 
and may need several repetitions. To ensure an optimized 
initial population for synaptic weights and bias may decrease 
the number of repetitions and the training time including a 
better classification accuracy [18]. 

The hybrid model proposed in our work had an overall 
accuracy of 80.7%. In other study the researchers reached a 
classification accuracy of 75.32% for all 50 movements for 
Database 1 (DB1) and 75.27% for Database 2 (DB2) with 
Random Forests model. For amputated subjects (DB3) the 
highest average for 50 movements was 46.27% [8]. Beyond 
the advance of Artificial Neural Networks, research find the 
classification accuracy for many movements as 78.9% for 
DB1 and 76.1% for DB2 by a Deep Convolutional Neural 
Network with 8 hidden layers [19]. Previous study modeled 
an ANN with 3 hidden layers with 512, 256, 256 fully 
connected neurons to classify 41 hand and wrist movements 
and reached overall accuracy of 93.87 ± 1.49 for DB5 and 

91.69 ± 4.68% for DB7, with a balanced accuracy of 84.00 ± 
3.40 and 84.66 ± 4.78% respectively [20]. 

Other papers described high accuracy compared to HML 
model [19,20], however it is important to note that the 
architecture tested in this work presents very low complexity, 
with only 3 hidden layers and 70 total hidden neurons. Also, 
data from only 10 subjects were used. DB2 consists of 40 
subjects. The main reason for this choice is to simulate few 
data scenarios. Authors had optimized Multilayer Perceptron 
hyperparameters using Genetic Algorithm and reached more 
than 90 % of accuracy in some classes, but only for 6 
movements from a dataset developed exclusively for the work 
[21]. 

The hybrid model developed possesses a great number of 
classes, a simple architecture, and a low complexity 
optimization algorithm, which indicates promising results. In 
addition, there are no previous studies using this model in 
sEMG pattern recognition problem. Certainly, there are 
several strategies to be tested in order to increase the 
classification accuracy, like different topologies and other 
optimization objects. There are different possibilities to 
change ANN hyperparameters like the number of hidden 
layers and neurons in each layer, learning rate and training 
algorithm. Moreover, the extracted features from sEMG 
signal can be optimized to reduce data dimensionality. There 
is a large field in sEMG to explore Differential Evolution 
because the tendency of optimization problems may rely on 
hybrid, simple and low computational cost algorithms. 
Moreover, they have great potential for real time application 
and possibilities to reach promising accuracy results. 

V. CONCLUSION 

The results confirmed an increase in mean overall 
classification accuracy using the hybrid model. Only one class 
reached greater accuracy for ANN model. This study paves 
the way to Differential Evolution applied to sEMG pattern 
recognition with simple architecture ANN. Also, there are 
many hyperparameters to be investigated to enhance hand 
gesture recognition, mainly the number of hidden layers and 
neurons in each layer. 
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