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ABSTRACT

A model to solve data aggregator allocation problem in smart grids is presented in this paper. We
use a model based on a set covering from the literature plus dispersion constraints among data
aggregators. These constraints are incorporated in the proposed model. We applied an algorithm
in a way that uses two steps to solve this model. Several instances were used in a simulation
way with different smart grid scenarios to test proposed model. The results were conducted with
different real-world parameters, such as data aggregator costs, a number of smart meters, and
number of the data aggregators. The computational results reached the best performance using
medium and small size instances. The ratio between the number of smart meters and the number
of allocated aggregators was in the range of 28-36.25 according to the literature. The test of all
instances demonstrated that the algorithm yielded optimal solutions in short computational times,
given in seconds. Considering that the data aggregator allocation problem is NP-hard, in future
work, we propose the use of metaheuristics to reach high-quality solutions in large size instances.

Keywords: data aggregator. smart meter. smart grid. modelling. combinatorial optimization
problem. set covering problem.

INTRODUCTION

There are challenges in reducing technical losses from the Joule effect in traditional elec-
tric distribution systems. The electric power distribution utilities must offer customers quality and
reliability in the use of energy. To overcome these problems, Cardenas et al. [1] describe a new
concept called smart grids (more details next section). The concept of a smart grid covers a range
of research challenges, such as distributed control, fault detection, and data communication using
the smart meters and data aggregators.

In this new concept of smart grids, data are sent in real time at short and constant periodic
intervals for one or more data aggregators over a wireless network infrastructure. The aggrega-
tors will transmit data that have been collected from a region containing the smart meters for the
electric power distribution utilities. Therefore, a medium-distance data communication network
infrastructure emerges.

The smart meters are installed in the final consumers and the data aggregators, in gene-
ral, are on top of the distribution utility poles. According to [2] some communication protocols can
be used to communicate between smart meters and data aggregators within a limited area, from
short to medium range communication as the IEEE 802.11 and IEEE 802.15.4 (ZigBee). Moreo-
ver, the authors in [2] claimed that in the smart grids are regularly used for long range communi-
cation, the protocols as GPRS, 3G, 4G, 5G or IEEE 802.16 (WiMax), between data aggregators
and the electric power distribution utilities.

The current technologies to communicate aggregators and the meters limit the positing of
data aggregators along electric power distribution network due decreasing signal propagation [3].
Thus, allocation of the data aggregators in smart grids brings in a hard problem. We proposed a
formulation based on the set covering problem with the constraints that the aggregators may not
be extended over a large area.

In the literature, there is a lack in the modeling that solves data aggregator allocation pro-
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blem in smart grids. In the models is not incorporating the constraints in distributions among the
aggregators, called here dispersion. Another shortcoming in the literature is referred about testing
smart grid electrical parameters as: the acquisition cost of aggregators for the utilities that are
settled by simple way as single cost and constant number of smart meters in testing scenarios.

In this paper, a new mathematical optimization model is presented based on electrical
parameters of smart grids, incorporating the constraints of dispersion. With other words, a new
model, with the above described restrictions, makes it possible to reduce redundancy and avoid
delays in the communication of data packages. The model also addresses the quality of service
by reducing delay and jitter in the transfer of data packets from the smart meters to the aggrega-
tors. Thus, it is introduced a limiting the distance between smart meter and aggregator. Conse-
quently, this model avoids packet loss and collisions, reduces network congestion, and minimizes
signal interference.

Beyond, in the model the electrical parameters can be tested including different aggre-
gator costs, dispersion among the aggregators, and flexible numbers of smart meters. However,
the model does not address ensuring data security that concerns customer privacy of confidential
information about their energy consumption habits.

In the smart grids there are different types of smart meters that they can communicate
with the aggregators impacting significantly the total cost in the smart grids. In our mathematical
optimization model, the bandwidth requirements of each smart meter, it is assumed to be iden-
tical. We call each smart meter of a standard smart meter. Further, a location problem of data
aggregators in smart grids can incorporate hybrid network topology (e.g., urban, suburban, and
rural) into the optimization model. But, in our mathematical optimization model is designed in an
urban scenario without interference source with several standard smart meters.

The proposed mathematical model in this work will solve the data aggregator allocation
problem in the smart grids. This model is partially based on the set covering problem. The stan-
dard smart meters can send data to the nearest aggregators. Thus, the constraints of dispersion
among the aggregators are incorporated into the proposed mathematical model. So, the cons-
traints minimize the number of standard smart meters to be assigned to the aggregators and set
up a minimum distance among the aggregators.

To solve the model, in this paper was proposed an algorithm with two steps for allocation
problem in the smart grids: first, we allocate the smart meters to the nearest aggregators (that
can be one or more aggregator); second, and then to reduce dispersion, a simple, but effective
branch-and-bound (B&B) exact method that minimizes the cost acquisition of aggregators for the
utilities is applied. A goal of this paper is also rationalizing the numbers of standard smart me-
ters and allocated aggregators. We highlight that the limitations of our mathematical optimization
model are: data transmitted security is not addressed; standard smart meter is assumed; urban
scenario without interference source is taking on.

This model with dispersion proved to be robust in computational tests using an algorithm
(to be involved in the two steps) with dissimilar parameters. Simulation results showed that the
proposed exact method for new optimization model was capable to find several high-quality opti-
mal solutions in a matter of seconds for medium-size instances.

In summary, the main contributions of this work, which are not considered in previously
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published works, can be listed as follows.
- A novel model is proposed based on smart grid electrical parameters.

- The elements needed in planning and implementing the model in smart grids are des-
cribed.

- The minimum acquisition cost of aggregators for the utilities is optimized and allocated.
- The numbers of standard smart meters and allocated aggregators are rationalized.

- The performance of the proposed algorithm provides benefits for the electric utilities,
consumers, and smart cities.

The paper is structured as follows: Section 2 is described about smart grids. Section 3
provides an optimization method for the data aggregator allocation problem in smart grids. In
Section 4, the computational results are provided. In Section 5, discussion is presented. In the
last section, conclusions are described together with future work.

SMART GRIDS

The smart power grid covers other issues as forecasting, grid stability, and demand res-
ponse. Therefore, smart grids constitute a multidisciplinary area that presents many challenges
[4]. Smart grids are based on efficient energy distribution using state-of-the-art electronics; use
of renewable energy resources to feed the electric distribution systems; active participation of
consumers in all chains of generation and distribution of electricity; presentation for customers of
consumption in real time through smart meters; and, in the future, using the energy from electric
vehicle batteries to store and distribute energy for the power electric systems.

Boccardo et al. [5] discussed sustainability in energy production that could entail a com-
plete transformation in consumer habits: The consumers could choose to schedule their con-
sumption of energy when the sustainability index is most favorable; customers would also have
incentive to use alternative energy sources. That enables electric power distribution utilities to
promote the adoption of renewable energy sources (e.g., wind power or solar power). In such ca-
ses, for example, energy regulators such as smart meters could impose the best pricing strategy
aligned with cleaner energy usage.

Smart grids are in a rapid development phase in the digital transformation of electric
power distribution utilities. In fact, in future, everything will be connected through so-called smart
zones: smart water grids, smart traffic systems, smart manufacturing, smart buildings, and smart
cities. Smart cities use technology to improve the transport network, reduce traffic, increase mo-
bility, improve energy efficiency, and promote urban sustainability.

According to Lopes et al. [6], smart cities aim to improve people's quality of life by pro-
viding shared information and allow innovations in several commercial and industrial areas. In
this sense, smart cities can use data sharing through the Internet in the context of the Internet of
Things [7].

The wide popularity of smart meters allows a huge amount of electricity consumption data
to be collected. Billing is no longer the only function of smart meters. Collection of data with higher
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effectiveness of the service, integrality, and universal access from smart meters is provided, pro-
ducing valuable information about consumer electricity consumption, behaviors, and lifestyles [9].

Smart meters installed in customer environments can store electricity consumption data
periodically for each individual consumer. These data are sent for one or more data aggregators
over a smart electric grid.

Figure 1 shows an example of a smart grid. It consists of smart meters, data aggregators
on top of utility poles communicating over wireless links, advanced metering infrastructure (AMI),
and the meter data system management (MDSM), which can collect the data measured by the
smart meters. The AMI is considered a key component of smart electricity grids, integrating sof-
tware and hardware components, meter data management systems, monitoring systems, and
information and control systems [10].

The aggregator is responsible collecting all the data from the several smart meters. It
can become a bottleneck in communications because the amount of transmitted data is high.
Therefore, the bandwidth for the data aggregator must be high. There are different bandwidth
requirements of the smart meter from the aggregator point of view. Therefore, the aggregator is a
vital element in the network [11].

Figure 1 —Example of a smart electric grid with aggregators and smart meters. (Adapted from
Aalamifar [8].)
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The efficient choice of aggregator locations in a smart grid is a difficult task. This task is
aggravated in large cities, which contain thousands of customers and consequently thousands
of smart meters [12]. According to Carniel and Mestria [13], the limitation in bringing into play
smart meters and aggregators is their high cost, principally the aggregators. That cost varies
with the number of aggregation channels and their functionalities, principally with introduction of
data security features. The cost of an aggregator was estimated equal to a phasor measurement
unit (PMU) [14]. A search of the literature reveals a minimum cost of a PMU in $40,000 (for two
supported channels) and an additional cost of $4,000 per channel [14], in addition to the costs of
fiber optics, wireless links, and switches (where here and in the following sections, all costs are
quoted in U.S. dollars).

SM: Smart Meter
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Santos [15] used a strategy to connect smart meters to aggregators, each of which had
a capacity to connect with an average of 30 smart meters. The smart meters collected electrical
data parameters at a rate ranging from once every five minutes to once an hour. This means that
electric power distribution utilities need to handle a considerable amount of data. In this case, it
was estimated that the amount of data collected in a month would be a factor of 3000 greater than
that from a single smart meter and this only for only one type of data: energy consumption [16].

Sharma and Saini [17] developed a metering distributed system in which the smart me-
ters have as a standard a single channel or three channels. They also studied the secure commu-
nication protocols needed in the smart grids. In addition, they described the following power mea-
surement parameters: watt-hour accuracy, measurement range, supply voltage, analog-to-digital
conversion, packet types in data transport, and the effect of harmonics on metrology that impacts
the reliability of smart metering infrastructure.

Tavasoli, Yaghmaee, and Mohajerzadeh [18] presented a location problem for the data
aggregators in a hybrid communication network, including fiber optics and WiMAX. The results
demonstrated that the optimization model at data aggregation points enables minimized costs
and density of data aggregators. They also proposed a location problem incorporating quality of
service metrics and mixed topologies (e.g., urban, suburban, and rural) into the optimization mo-
del. It is worth noting that the total number of aggregators allocated in their hybrid topology is less
than the sum of aggregators needed for each one individually. This is because the areas overlap
in the mixed networks.

The allocation of smart meters and data aggregators is important in the smart grids be-
cause it will enable the management in the electric power quality and provides services to the
customers. In future, the electricity markets will ensure that consumers have access to the ener-
gy services with flexible and low cost. In this sense, the power electric systems based on clean
energy sources as wind and solar power can offer an economic alternative energy service. Thus,
it contributes as an important way to sustainable development in the world.

MATERIAL AND METHODS

In this work, a research of the literature was conducted in the Scielo, Scopus, Science
Direct, IEEE Xplore, and CAPES databases using the following terms: smart grid, aggregator, set
covering, smart meter, optimization, distribution system, and heuristics. Our research methodolo-
gy is applied and exploratory with an inductive and quantitative method. We propose a mathema-
tical model for the data aggregator allocation problem in smart grids. The method applied to the
proposed mathematical model was a B&B exact method.

Mathematical model

The proposed model adds in the Set Covering Problem (SCP) formulation described in
Beasley [19] the introduction of the dispersion constraint among the aggregators called the dis-
persion set covering problem (DSCP).

The DSCP is NP-hard because it can be reduced to the SCP. The SCP is formally de-
fined as follows: Given a set of m elements of M = {1, ..., m} and a collection of n subsets N = {SJ.
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c M, with 1 £j < n}, with non-negative costs, a collection of subsets X © N is a cover of M if the
following holds: USjeX Sj =M. Then, X is an optimal cover of M without any redundant subset in X;
i.e., X will not cover M if any subset is removed from X. The goal of the SCP is to find a minimal
cost cover X of M.

Henceforward, we will call a standard smart meter as smart meter, in short. For the data
aggregator allocation problem in a smart grid, the elements to be covered are the smart meters. A
cluster formed by the smart meters should be covered by at least one candidate aggregator (each
with a cost of c¢j), where X is composed of clusters of all allocated aggregators [20]. In this work,
we have assumed one-hop communication between the smart meters and the data aggregators
(i.e., a single signal path from the smart meter to the aggregator). The DSCP model is formulated
as a binary integer nonlinear programming problem as follows:

minz=ch.xj,j=1,...,n, (1)
subject to

Yaijxj=1, j=1,...,n;i=1, ..., m, (2)
XX, < distjk, r>0, VjKk €N, (3)
x€{0,1}, j=1,..,n, 4)

where a, = 1ifie Sj and a, = 0 otherwise, r is the minimum distance between two allocated ag-
gregators, distjk is the distance between candidate aggregator j and candidate aggregator k, and
the decision variable x, =1 if the subset S, belongs to cover X and x; = 0 otherwise.

The objective function (1) minimizes the allocation of candidate data aggregators to the
smart meters. Note that there are several types of aggregators in the real world, each with diffe-
rent costs. In the literature, these are simplified as a single costcj=C, forallj={1, ..., n}, where C
is a constant value. In this work, the different costs for candidate data aggregators will be introdu-
ced, where each has a number of supported channels ranging from a few simple ones ($40,000)
to more sophisticated setups ($152,000). The aggregator costs do not account for the costs of
data security (e.g., the use of encryption of the data sent by the smart meters).

Constraints (2) ensure that every smart meter must be covered by at least one aggre-
gator. Constraints (3) ensure that the aggregators have a minimum distance between them. The
purpose of constraints (3) is to ensure that the aggregators are not in close proximity. These cons-
traints allow different smart meters to be served by different aggregators.

Constraints (3) decrease redundancies, preventing delays between data packets. The
integrality constraints are outlined in (4) with the integer variables in the DSCP model equal to 0
or 1 to represent a decision.

For a radio communication between a smart meter and an aggregator to take place, a
maximum distance (md) is required between these two devices. This means that the smart me-
ter—aggregator distance has to be less than or equal to the transmission range of the smart meter.
Therefore, to reduce the redundancies of the aggregators, each one has to be at a minimum ra-
dial distance (r) from the others (r = md). The value of md was set equal to 100 m, in accordance
with the study of Aalamifar et al. [8]. Therefore, in constraints (3), r = 100 is assumed.
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Two steps for solving allocation problem

The mathematical optimization model is solving by an algorithm in the two steps: first,
the smart meters were allocated to the nearest aggregators (in this case, each smart meter can
be allocated one or more aggregator). A smart meter is allocated to the aggregators, since that it
reaches until a distance (md). This distance is required between these two devices (smart meter
and aggregator) due to the radio communications.

After that, in second step, an effective B&B exact method that minimizes the cost acquisi-
tion of aggregators is applied to model showed in section 3.1. We call attention to that the model is
formulated as an integer programming problem. The data input to proposed model are compose
by cost of aggregators (coefficients in the objective function of DSCP model), coverage matrix
(constraints number 2 in this model), distances between candidate data aggregators (right-hand
side of the constraints number 3), and minimum radial distance.

An exact B&B method will be used to solve the DSCP with the LINDO solver [21]. The
basic idea of the B&B algorithm is to solve in the first phase the linear programming problem.
Then, the B&B algorithm performs several steps until the solution found is an integer solution. In
the first phase, if the algorithm does not find an integer solution, i.e., for any variable x (i=1, 2,...,
n), then the B&B algorithm chooses a fractional variable x = K, which is a branch variable, where
K'is a value belonging to the set of real numbers (K € R) and m is an integer (m € N), with m = (i
=1,2,...,0orn).

Let L be the truncated integer value of K. New subproblems can then be created by alter-
nately attaching one of two constraints: x <L orx = L+1. This branching is continued as long as
there are fractional variables. The B&B algorithm performs several feasibility tests to be satisfied.
In the end, if the B&B algorithm has not exceeded the memory limit and it has found a feasible
solution, the B&B algorithm stops and it presents the optimal solution. The Algorithm 1 shows the
pseudocode to solving data aggregator allocation in the smart grids.

The Algorithm 1 reads data input: coefficients of the objective function, coverage matrix,
distances between candidate data aggregators, minimum radial distance, and total number of
candidate data aggregators and smart meters. In a first step the Algorithm 1, each smart meter
is allocated to the nearest aggregators using nearaggregators procedure. After, in a second step,
the Algorithm 1 obtains a file data using formulDSCP procedure according to the DSCP model
described in section 3.1. This model is formed by data input and the temporary matrix that con-
sists of the candidate aggregators and meters. Next, into the second step, the Algorithm 1 applies
a branch-and-bound approach by exactmethod procedure. Finally, the Algorithm 1 prints the final
solution.
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Algorithm 1: Two Steps
MNotation:
C[j] - vector of objective function j coefficients
MI[i.j] - matrix of coverage of i meters and j aggregators
D[j.k] - matrix of distances between j candidate data aggregators and k candidate data aggregators
md - minimum radial distance
i - total number of candidate data aggregators
{ - total number of smart meters
T[i.i] - temporary matrix that consists of j candidate aggregators and i meters
f - file data using the DSCP model
5 - final solution
Input (C M, D. md n )
Dutput (S);
S=h
Begin
Airst step
for (=1to /) do
for (j=1ton)do
if (meter / is nearest to aggregator j) then
T=nearaggregators(i )
endif
endfor
endfor
Asecond step
=formulDSCR(C, M. D, md, n, |, T);
S=exactmethodif),
Print S Solution;
End

Example of a smart grid

To illustrate the data aggregator allocation problem with the DSCP mathematical model,
we present an example consisting of four candidate aggregators (x,, x,, X, and x,) and 12 smart
meters (numbered in sequence from 1 to 12), as shown in Figure 2. All smart meters primarily
were allocated to the nearest aggregators, conform first step. For example, the smart meters of
number 1, 2, 3, and 5 were allocated to the aggregator of number 1 (denoted by x,); smart meter
of number 4 was allocated to the aggregators (1 and 3); the smart meters of number 6 and 7 were
allocated to the aggregator 2 (denoted x,).

After that, the smart meter of number 8 was allocated to the aggregators (2 and 4); the
smart meters of number 9 and 10 were allocated to the aggregator 3 (denoted x,). Next, smart
meter of number 11 was allocated to the aggregators (2, 3, and 4); smart meter of number 12 to
the aggregators (3 and 4), with aggregator of number 4 represented by variable x,.
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Figure 2 — Example of a smart grid with candidate aggregators and smart meters.

LG

It needs to call attention to that some smart meters were allocated only to an aggregator
and other two or more aggregators, conform is shown in Figure 2. In this way, then we use an op-
timization mathematical formulation (Figure 3) according to the DSCP model proposed in section
3.1. The DSCP model is composed with the input data as: coverage matrix and cost of aggrega-
tors (both showed in Table 1), r minimum radial distance, and distances between candidate data
aggregators (Table 2).

Table 1 — Example of coverage matrix composed of smart meters and aggregators.
Costs of candidate aggregators ($1000s) ¢, =10 c,=15 ¢, =18 c,=4

Decision variables X, X, X, X,
Number of smart meters
1 1 0 0 0
2 1 0 0 0
3 1 0 0 0
4 1 0 1 0
5 1 0 0 0
6 0 1 0 0
7 0 1 0 0
8 0 1 0 1
9 0 0 1 0
10 0 0 1 0
1" 0 1 1 1
12 0 0 1 1

An exact method to the optimization mathematical formulation is applied to decrease re-
dundancies and to ensure that the aggregators are not in close proximity. The solution reached by
exact method is presented in Figure 4. Next, it is showed the formulation and solution optimization
using input data from Figure 2, in more details.

Table 1 lists the costs of the candidate aggregators in thousands of dollars, the decision
variables, and the coverage matrix of the smart meters distributed to the candidate aggregators,
corresponding to the example of Figure 2. Table 2 lists the distances in linear meters between the
candidate data aggregators (with distjk that is the distance between candidate aggregator j and
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candidate aggregator k) and r minimum radial distance between them.

Table 2 — Distances between the candidate data aggregators and a minimum radial distance (r =

100 m).
Decision variable (candidate aggregators) X, X, X, X,
X, 0 140 110 200
X, 140 0 110 120
X, 110 110 0 140
X, 200 120 140 0

Figure 3 — Optimization mathematical formulation as data input to the solver.

min 10x1 + 15x2 + 18x3 + 4x4
st

x1 >=1

X2 >=1

x3 >=1

x1 + x3 >=1

X2 + x4 >=1

X2 + x3 + x4 >=1
X3 + x4>=1
100x1*x2<=140
100x1*x3<=110
100x1*x4<=200
100x2*x3<=110
100x2*x4<=120
100x3*x4<=140
end

GIN x1

GIN x2

GIN x3

GIN x4

Figure 3 presents an optimization mathematical formulation using the proposed model
applied to the DSCP as input data (via a text file) to the solver LINDO. Figure 3 uses the data from
Tables 1 and 2 and the smart grid information described in Figure 2. Figure 4 presents a solution
showing the objective function value ($43,000) and the allocated data aggregators (x1, x2, and
x3).

Table 3 presents more details about the obtained solution with the smart grid information
described in Figure 2. The first, second, and third columns of Table 3 list the instance (scp4-12-
4-18), the number of candidate aggregators, and the number of smart meters, respectively. The
fourth and fifth columns list the lower and higher costs of aggregators, respectively. The next
section will describe the details of how was generated the instances.

Figure 4 — Solution of the optimization mathematical formulation using input data from Figure 3

OBJECTIVE FUNCTION VALUE
1) 43.00000

VARIABLE  VALUE REDUCED COST
X1 1.000000  10.000000
X2 1.000000  15.000000
X3  1.000000  18.000000
X4  0.000000 4.000000
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Table 3 — Obtained values for the instance of Figure 2

Instance Candidate aggregators sm Lower cost Higher cost OF ($1000s) t(s) Allocated aggregators

4-12-4-18 4 12 4 18 43 <1 1,2,3

The sixth and seventh columns of Table 3 present the objective function (OF) value in
thousands of U.S. dollars and the computational time (t) reached by using the B&B exact method
(<1 s), respectively. The last column gives the allocated data aggregators (1, 2, and 3) that are
represented by (x,, x,, and x,) variables, all set equal to 1, to communicate to the smart meters.

Instances and scenarios applied in smart grids

Tests using the proposed mathematical model applied to the DSCP were performed for
several scenarios composed of several instances. In each instance was generated with smart
meters and candidate data aggregators distributed in a planar region for a generated smart grid in
a simulation way. It is assumed that the bandwidth of each smart meter to be identical, so-called
standard smart meter. In this instance, the topology of the smart grids, in planar regions, consists
in the installation of the smart meters in an urban scenario without interference source. In this
scenario, there are the data aggregators that will be selected among candidate data aggregators.

The following parameters used in the instances were varied: costs of the aggregator in
thousands of dollars with a uniform distribution on the range [40—152], the number of candidate
aggregators randomly distributed in a planar region in the range [21-290], and the number of
smart meters in the range [120-725].

It is guaranteed that the data aggregators are distributed in the planar region in a way
that each smart meter will be covered by one or more candidate data aggregators. For example,
instance scp40-140-100-152 has in its scenario 40 candidate aggregators distributed in a planar
region, 140 smart meters assigned in the same region, and the costs of each candidate aggrega-
tor in a uniform distribution between 100 and 152, as shown in Figure 5.

The distance from the smart meter to the candidate aggregator must be equal to md,
where md is the maximum distance permitted. Recall that some smart meters may be assigned to
more than one aggregator. Moreover, in the proposed mathematical model, the aggregators are
at the minimum distance between them.

Figure 5 — Costs of the candidate data aggreqgators

Costs of the Candidate Aggregators
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Two scenarios (1 and 2) were created for small- and medium-size instances. In the first
scenario (1), the numbers of smart meters were kept fixed, but their positions were different in
each instance, and they were distributed in a single planar region. In this scenario, the number of
aggregators and costs are different.

In scenario 1, other tests were also performed with a constant number of candidate ag-
gregators and different costs. In this last case, the numbers of fixed smart meters distributed in a
single planar region in different locations were also varied.

In scenario 2 (the case of the more robust smart grids), a new planar region was genera-
ted with five different planar regions, where each one is like that of scenario 1.

COMPUTATIONAL RESULTS

This section presents the computational results using the LINDO solver release 6.1 run
on a computer with an i7 processer, operating at 2.2 GHz, with 8 GB of memory and 6 cores.
The tests were conducted for the two scenarios described in the last section. In both scenarios,
extremely short computational times were reached, with some being <1 s.

Scenario 1

Table 4 presents the values obtained for various instances, with the number of smart me-
ters equal to 140 and the higher cost of the aggregator equal to $152,000. The first, second, third,
and fourth columns of Table 4 list the instance type, the number of candidate aggregators, the
lower cost of the aggregator, and the value of the objective function (OF) in thousands of dollars,
respectively.

Table 4 — Obtained values for the instances in scenario 1

Aggregators Lower cost OF ($1000s) t(s) Allocated aggregators

Instance
scp21-140-40-152 21 40 336 <1 1,6, 15, 19, 21
scp22-140-40-152 22 40 329 <1 1,2,13,15,19
scp23-140-40-152 23 40 320 <1 1, 4,10, 15,19
scp24-140-40-152 24 40 335 <1 1,6,12,15,19
scp25-140-40-152 25 40 273 <1 5,6, 15,19, 25
scp26-140-60-152 26 60 377 1 4,15, 16, 25, 26
scp27-140-60-152 27 60 361 1 1,5, 15, 16, 19
scp28-140-60-152 28 60 298 1 5,13, 15,19
scp29-140-60-152 29 60 385 1 1,4, 16, 25, 27
scp30-140-60-152 30 60 344 1 8, 15, 26, 27
scp31-140-80-152 31 80 403 2 11, 16, 21, 31
scp32-140-80-152 32 80 369 1 17,18, 21, 30
scp33-140-80-152 33 80 366 1 14, 21, 22, 33
scp34-140-80-152 34 80 434 2 6, 14,17, 21, 31
scp35-140-80-152 35 80 388 1 15,17, 22, 34
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scp36-140-100-152 36 100 448 2 6, 26, 29, 33

scp37-140-100-152 37 100 460 2 12, 15, 25, 28
scp38-140-100-152 38 100 463 4 5, 14, 16, 26
scp39-140-100-152 39 100 502 12 11,18, 22,29
scp40-140-100-152 40 100 438 2 19, 28, 33, 39

The fifth column of Table 4 gives the computational time demanded by the exact method
in seconds, and the last column gives the number of allocated aggregators needed to serve the
smart meters. Table 4 list four sets of instances distributed by the lower costs of the aggregators
(40, 60, 80, and 100), but the higher cost of the aggregators is a constant value of 152.

We observe that, as more candidate aggregators are introduced, the cost of the objective
function decreases in each individual set of instances. In the first set of instances, it was obser-
ved that aggregators 15 and 19 (x,, = x,, = 1 in the solver) were chosen in every case in this set.
These aggregators have lower costs (fewer number of supported channels), but they are still able
to serve a portion of the smart meters.

Something similar was observed with aggregator 21 (x,, = 1 in the solver) in the third set
of instances, except in one instance. In Table 4, the average number of allocated aggregators was
4.45. As the number of aggregators is an integer, and the ratio between the numbers of smart
meters to the number of allocated aggregators is obtained as 5, we obtain the average number of
28 smart meters for each allocated aggregator.

Table 5 presents the values obtained for various instances, with a constant number of the
candidate aggregators equal to 50, 140 smart meters, and the lowest and highest costs of the
aggregators being 100 and 152 in thousands of dollars, respectively. The first, second, and third
columns of Table 5 list the instance type, the objective function value in thousands of dollars, and
the computational time in seconds, respectively. The fourth column gives the number of allocated
aggregators needed to serve the meters, and the last column gives the type of distribution (TD)
of smart meters in the planar region. We identified the different distributions of smart meters over
the planar regions by the numbers 1, 2, 3, 4, and 5. For example, instance scp50-1-140-100-152
was generated in scenario 1 with 50 candidate aggregators, 140 smart meters, and the costs of
each candidate aggregator in a range from 100 to 152.

Table 5 — Obtained values for instances in scenario 1 with a constant number of aggregators.

Objective function ($1000s) t(s) Allocated aggregators TD

Instance
scp50-1-140-100-152 439 4 2,17, 30, 49 1
scp50-2-140-100-152 427 7 8,19, 29,43 2
scp50-3-140-100-152 439 5 3,19, 30, 35 3
scp50-4-140-100-152 467 6 25, 26, 30, 38 4
scp50-5-140-100-152 472 9 8,42, 46, 47 5

In Table 5, we observe that the average cost of the objective function was 448.8, with a
standard deviation 19.6. Aggregator 30 (x,, = 1 in solver) was chosen in three instances because
it has a lower cost. The aggregator has fewer supported channels, but it serves several smart
meters. The number of allocated aggregators was four in all instances, with the ratio between the
numbers of smart meters to the number of allocated aggregators equal to 35.
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Table 6 presents the values obtained by instances with the number of candidate aggre-
gators ranging from 56 to 60, a fixed number of smart meters equal to 120, the lowest aggregator
cost equal to $110,000, and the highest cost equal to $152,000. The first, second, third, and fourth
columns of Table 6 present the type of instance, the value of the objective function in thousands of
dollars, the computational time in seconds, and the number of allocated aggregators, respectively.

Table 6 — Obtained values with different parameters on smart meters, aggregators, and costs.
OF ($1000s) t(s) Allocated aggregators

Instance
scp56-120-110-152 453 6 1,12,19, 29
scp57-120-110-152 467 8 14, 29, 38, 42
scp58-120-110-152 478 7 27, 38, 41, 55
scp59-120-110-152 494 7 20, 38, 52, 59
scp60-120-110-152 471 9 15, 20, 27, 29

Table 6 presents aspects of scenario 1 different from those previously studied, with a va-
riety of parameters of the smart grids. We observe in this scenario that the number of candidate
aggregators was increasing, but costs of the candidate aggregator were decreasing. From Table
6, one can also observe that, for a diverse number of aggregators, the average cost of the objec-
tive function was 472.6, with a standard deviation of 15.0.

The number of allocated aggregators was four in all instances; the ratio between the num-
bers of smart meters and the aggregators was equal to 30. Aggregator 29 (x,, = 1) was chosen in
three instances because of its low cost.

Scenario 2

Table 7 lists the values obtained for instances with a powerful smart grid. The first, se-
cond, third, and fourth columns of Table 7 present the instance identifier (Id), the number of
candidate aggregators, the number of smart meters (sm), and the lower cost of the aggregators,
respectively.

Table 7 — Values obtained for the instances in scenario 2.
Id Aggregators sm Lower cost Higher cost OF ($1000US) t(s) taa R

1 190 600 110 152 2349 10 20 30
2 215 700 120 152 2509 25 20 35
3 240 700 120 152 2516 50 20 35
4 265 725 120 152 2533 51 20 36.25
5 290 600 110 152 2363 32 20 30

The fifth, sixth, and seventh columns in Table 7 present the higher cost, the value of the
objective function (OF) in thousands of dollars, and the computational time demanded in seconds.
The eighth column gives the total number of allocated aggregators (taa) demanded by the smart
meters, and the last column gives the ration R (=sm/taa) between the smart meters (sm) and the
total number of allocated aggregators.

We can observe that, when the costs of the aggregators are high, the R ratio is increa-
sing, as can be seen in Tables 5 and 7. This occurs because most expensive aggregators have a
larger number of supported channels with capacity to allocate more smart meters.
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DISCUSSION

The mathematical model was applied for several instances with a variety of parameters.
The parameters tested were size instances, aggregator costs, numbers of aggregators, disper-
sion between aggregators, and numbers of standard smart meters. It proved to be robust and
supported variations in the parameters.

We performed several tests using a new mathematical model applied to the DSCP. The
computations revealed the minimum cost for allocation of aggregators in covering the standard
smart meters in all instances. This model can be used as a decision-making tool for engineers in
the deployment of smart grids and will be of great importance for the electric power distribution
utilities. Beyond of that provides benefits to the consumers in a smart energy context in the smart
cities. Smart energy aims to serve energy demands incorporating renewable energy sources to
maintain sustainability while minimizing adverse effects on the environment [22].

In the proposed scenarios in this work, computational results yielded a ratio from 28 stan-
dard smart meters to 36.25 for each allocated aggregator. This ratio is close to the value of Santos
[15], who found a value of 30 standard smart meters for each allocated aggregator.

Additional research tasks can be undertaken to overcome the limitations of the current
study. These limitations are due to the B&B algorithm that solves the DSCP for a certain number
of aggregators and standard smart meters. The main computer memory does not support proces-
sing the algorithm for large-size instances. We know that the solution to the DSCP is affected by
an increase in the number of aggregators. When the numbers of aggregators are large, use of the
main computer memory will be substantially increased.

According to Araujo and Mestria [23], finding an optimal solution in a reasonable compu-
tational time is possible only for small- or medium-size instances. In this sense, heuristic or me-
taheuristic methods can be used to solve the data aggregator allocation problem in large smart
grids.

CONCLUSIONS AND FUTURE WORK

Given the importance of the deployment of smart grids and metering infrastructure, we
addressed the modeling of and solution to the data aggregator allocation problem in smart grids.
This deployment brings up electric power quality control and provides flexible energy services to
the customers with low cost using sustainable energy sources.

For this purpose, we used an optimization mathematical model based on the set covering
problem. We added dispersion constraints between the aggregators to the coverage model.

The solutions obtained by an exact method using optimization mathematical model pro-
ved to be robust when it applied different parameters. We conclude that new optimization model
was capable to solve the problem of data aggregator allocation in the smart grids. Thus, the set
of standard smart meters and aggregators were rationalized providing benefits for the electric
utilities. The computational results showed that ratio between standard smart meters and an allo-
cated aggregator is line with the literature.
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The limitations concern customer privacy of confidential information about their energy
consumption habits. Therefore, the data aggregators must receive and send information without
revealing confidential information. In this case, data acquired from the aggregators must be en-
crypted to preserve the privacy of the customer static data [24]. Thus, the aggregators' acquisition
costs will be higher. Questions about security in the AMI infrastructures can also be addressed in
a future study [25].

Finally, the model explored in this work can be modified by considering a maximum bu-
dget (MAX) to purchase the data aggregators by electric power distribution utilities. Therefore,
the following constraints should be introduced into the DSCP model [(1)—(4)] as a binary integer
nonlinear programming problem:

Sox <MAX, j=1,..n. (5)

In future work, we propose using the chemical reaction optimization metaheuristic of Yu,
Lam, and Li [26] for the DSCP. Because the DSCP is NP-hard, this will enable quality solutions to
be found in a reasonable computational time for large-size instances.
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